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Abstract

The propagation of acoustic disturbances in a slowly-varying duct with mean swirling flow and non-
uniform mean entropy is considered. This is representative of the region of swirling flow downstream of the
rotor in aeroengine applications where variations in mean entropy can be significant. The duct is assumed
to vary slowly in axial cross section and a consistent multiple-scales solution is derived. The variation in
axial wavenumber and amplitude of the duct modes is determined as part of the solution.

Comparisons are made between the cases of isentropic and non-isentropic flow. The cut-on/cut-off
characteristics of a given mode are altered by any form of non-uniform mean entropy, with modes pushed
closer to cut-off resulting in larger variations in amplitude. The greatest departure from the baseline
isentropic result occurs for a positive entropy gradient. Increasing the swirl velocity at the duct inlet leads to
increasing levels of mean entropy.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The way in which acoustic disturbances propagate through sections of an aeroengine is crucial
for understanding and predicting the generation of noise and instabilities within the engine. The
geometry of the aeroengine duct and the region of mean swirling flow downstream of the rotor
have a significant impact on both of these phenomena. The propagation of unsteady disturbances
see front matter r 2005 Elsevier Ltd. All rights reserved.
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in a slowly-varying duct with mean swirling flow was addressed by Cooper and Peake [1]. This
analysis was carried out under the assumptions of isentropic flow and no entropic disturbance
generation. However in turbomachinery applications, variations in mean entropy can be
significant. The aim of this paper, therefore, is to address what effect different mean entropy
distributions have on the propagation of disturbances in mean swirling flow in a duct which varies
slowly in axial cross section.
There is natural interest in sound transmission through ducts of varying cross section since in

practical applications it is likely that ducts will not be exactly uniform. The problem of a circular
duct with varying cross section carrying irrotational flow was considered by Nayfeh and co-
workers [2–4], and more recently by Rienstra [5] who developed a consistent multiple-scales
solution based on the assumption of a slow axial scale X ¼ �x, where � is a small parameter
related to the axial slope of the duct walls and x is the standard axial coordinate. This method was
compared very successfully with a fully numerical solution by Rienstra and Eversman [6]. The
consistent multiple-scales approach was extended by Peake and Cooper [7] to consider acoustic
propagation in ducts with slowly-varying elliptic cross section. This was then followed by a
generalized solution for acoustic propagation in ducts of arbitrary cross section by Rienstra [8].
Cooper and Peake [1] derived a multiple-scales solution for a slowly-varying circular duct where
there exists non-zero mean vorticity. The analysis for ducts carrying mean vortical flow is more
complicated than the one for irrotational flow since the acoustic and vorticity equations become
coupled and the system of equations is not self-adjoint.
Little work has been carried out on the effects of mean entropy gradient in mean swirling flows

even for the case of uniform ducts. For homentropic flow in a uniform duct Golubev and Atassi
[9] showed that unsteady disturbances have both a potential and vortical part and as a result the
solutions to the governing equations are coupled acoustic–vorticity waves. Two distinct families
of solutions exist; one which is pressure-dominated, analogous to acoustic waves in irrotational
flow and well-defined by a modal decomposition, and a second which is vorticity-dominated.
Golubev and Atassi [9] showed that for the vorticity-dominated waves a critical layer exists in the
eigenmode spectrum and as such it is not generally appropriate to describe these vortical waves in
terms of modes, but instead as the solution to an initial-value problem [10]. Under the assumption
of non-isentropic flow the energy equation is also coupled to the acoustic and vorticity equations,
and the solution must be expressed in terms of potential, vortical and entropic components. The
two distinct families of eigensolutions are still found to exist. This paper is concerned with sound
propagation and attention is therefore restricted to the pressure-dominated waves. The analysis of
Tam and Auriault [11] assumed, indirectly, a mean flow with non-zero mean entropy through the
assumption of uniform mean density. However, the governing equations for the disturbance did
not account for any entropic disturbances. Entropy generation has been investigated for swirling
jets impinging onto an adiabatic wall [12,13], where it was found that increasing the swirl velocity
enhanced the entropy generation.
In this paper a multiple-scales analysis, based on the techniques used by Rienstra [5] and

Cooper and Peake [1], is carried out on the coupled system of acoustic, vorticity and energy
equations. The general problem is set out in Section 2. In Section 3 the steady mean flow solution
is determined in terms of a steady streamfunction and calculated as a numerical solution, given a
prescribed set of initial conditions. In Section 4 the Oð1Þ approximation to the unsteady flow is
determined by solving an eigenvalue problem at each axial location. The variation of the axial
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wavenumber along the duct is calculated at this order which determines which modes are cut-on
(propagate) or cut-off (evanescent). The equations which determine the Oð�Þ correction to the
unsteady flow are used to define a governing equation for the amplitude variation of the leading-
order solution. In Section 5 the results based on two sets of initial conditions are presented.
Firstly, in order to determine the effects of mean entropy on the propagation of disturbances,
different initial mean entropy distributions are prescribed at the duct inlet. It is shown that both
the cut-on/cut-off behaviour of the modes and the variation in amplitude are affected significantly
by the form of the mean entropy distribution. Secondly uniform mean density is prescribed at the
inlet, together with different swirl distributions. The level of mean swirl is found to affect the level
of mean entropy generated, as well as the characteristics of the disturbance propagation.
2. Problem formulation

Consider a cylindrical duct, with coordinate system ðx; r; yÞ, which varies slowly in axial cross
section and contains a compressible, inviscid, polytropic gas. Lengths are non-dimensionalized by
a reference duct radius, R1, velocities on a reference sound speed, c1, density by r1 and pressure
by r1c21, and all quantities used subsequently are non-dimensional.
The duct is defined in terms of a slow axial scale X ¼ �x, where � is a small parameter which

characterizes the slope of the duct walls, such that

0pR1ðX ÞprpR2ðX Þ. (1)

The parameter � is used as an asymptotic parameter to determine a consistent multiple-scales
solution. The general flow is described in terms of the velocity field v, sound speed c, density r,
pressure p and entropy s. The fluid motion is governed by the equations for conservation of mass,
momentum and energy

qr
qt
þ r � ðrvÞ ¼ 0, (2)

r
qv
qt
þ v � rv

� �
¼ �rp, (3)

qs

qt
þ v � rs ¼ 0, (4)

together with the relations

rg

gp
¼ e�s=cv ; c2 ¼

gp

r
, (5)

where g ¼ cp=cv is a gas constant, cv is the specific heat capacity at constant volume and cp is the
specific heat capacity at constant pressure, both taken to be constant. Note that if s1 is the
reference entropy value then g ¼ expðs1=cvÞ. The state s ¼ 0 then reduces the problem to that
obtained by standard isentropic flow assumptions (see Ref. [1] for rotational flow and Ref. [5] in
the limit of zero mean vorticity).
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The total flow field is assumed to be composed of an axisymmetric steady mean flow and a
small unsteady perturbation such that

½v; c;r; p; s�ðx; r; y; tÞ ¼ ½V;C;D;P;S�ðX ; rÞ þ ½~v; ~c; ~r; ~p; ~s�ðx; r; y; tÞ. (6)
3. Mean flow

Assuming the flow field takes the form in Eq. (6) the governing equations (2)–(4) are linearized
to yield the following equations which govern the mean flow:

r � ðDVÞ ¼ 0, (7)

DV � rV ¼ �rP, (8)

V � rS ¼ 0. (9)

If the mean velocity field is of the form

V ¼ UðX ; r; �Þex þ VðX ; r; �Þer þW ðX ; r; �Þey, (10)

then with

q
qx
¼ �

q
qX

, (11)

the steady continuity equation (7) shows that Oð�Þ axial variations must be balanced by Oð�Þ radial
variations. This leads to the following expansions in terms of the asymptotic parameter �:

½U ;W ;C;D;P;S�ðX ; r; �Þ ¼ ½U0;W 0;C0;D0;P0;S0�ðX ; rÞ þOð�2Þ, (12)

V ðX ; r; �Þ ¼ �V1ðX ; rÞ þOð�3Þ. (13)

The calculation of the mean flow field is based on the analysis given in Section 7.5 of Ref. [14]
for incompressible flow in a variable-area pipe. This was modified in Ref. [1] to include
compressibility and is further modified here to include non-zero mean entropy.
The mean vorticity, n, for the velocity field in Eqs. (12) and (13) is

n ¼
1

r

qðrW 0Þ

qr
ex � �

qW 0

qX
er �

qU0

qr
ey þOð�2Þ. (14)

The continuity equation (7) can be satisfied by writing the velocity components U0 and V1 in
terms of a streamfunction, cðX ; rÞ, such that

U0 ¼
1

rD0

qc
qr
; V1 ¼ �

1

rD0

qc
qX

. (15)

Using Bernoulli’s equation, the y-momentum equation, and the entropy equation, the enthalpy
(H) the circulation (C) and the mean entropy (S) can be written as arbitrary functions of c

1

2
ðU2

0 þW 2
0Þ þ

D
g�1
0 eS0=cv

g� 1
¼ HðcÞ, (16)
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rW 0 ¼ CðcÞ, (17)

S0 ¼SðcÞ. (18)

Eqs. (17) and (18) state that the circulation and mean entropy are constant along a streamline. For
non-isentropic flow Crocco’s relation,

V� n ¼ rH � TrS, (19)

where T ¼ P0=ðRD0Þ is the temperature (R ¼ cp � cv), which can be used to obtain an expression
for the azimuthal vorticity, xy, in terms of H, C and S. Taking the r-component of Eq. (19) leads
to the identity

W 0xx �U0xy ¼
qH

qr
� T

qS
qr
¼ rD0U0½H

0ðcÞ � TS0ðcÞ�, (20)

where 0 denotes differentiation with respect to c. Substituting for xx from Eq. (14) and using
Eq. (17) gives

xy ¼W 0D0C
0ðcÞ � rD0½H

0ðcÞ � TS0ðcÞ�. (21)

Using the expression for xy in Eq. (14) the following equation governing c and D0 is obtained:

q
qr

1

rD0

qc
qr

� �
¼ rD0½H

0ðcÞ � TS0ðcÞ� �D0C
0ðcÞ

C

r
. (22)

Writing the Bernoulli condition (16) in terms of c and D0 gives a second equation governing the
evolution of c and D0:

1

2

1

r2D2
0

qc
qr

� �2

þ
C2

2r2
þ

D
g�1
0 eS=cv

g� 1
¼ HðcÞ. (23)

The associated boundary conditions which, together with Eqs. (22) and (23), govern the mean
flow field are

cðX ; r ¼ R1Þ ¼ 0; cðX ; r ¼ R2Þ ¼ constant. (24)

For a hollow duct the first condition is replaced by c / r2 as r! 0. The constant in Eq. (24) is
determined from initial conditions specified at the inlet of the duct. Note that the dependence on X
occurs only through the variation in the boundary condition.
Eqs. (22) and (23) can be solved numerically for any set of inlet conditions. Here two cases are

analysed which enable the functions H, C and S to be determined analytically. Under standard
isentropic flow assumptions only initial conditions for the velocity components need be prescribed
since the initial density can be obtained from the radial momentum equation. For non-isentropic
flow an additional condition must be prescribed. In the first case the initial mean entropy
distribution is chosen as the additional prescribed inlet condition. The second case involves
prescribing uniform density at the inlet. Results of the computations are given in Section 5.
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4. Disturbance field

4.1. Governing equations

In order to determine the evolution of the unsteady disturbance field the unsteady, rotational,
disturbance velocity is decomposed, following Goldstein [15] into potential, vortical and entropic
components as follows:

~v ¼ rfþ uR þ ~sV=2cp. (25)

The unsteady pressure is expressed solely in terms of the potential by

~p ¼ �D0
Df
Dt

, (26)

where D=Dt � ðq=qtÞ þ V � r is the convective derivative. The linearized equations obtained from
Eqs. (2)–(4) can then be written in the form

D

Dt

D0

C2
0

Df
Dt

 !
� rðD0rfÞ ¼ r � ðD0u

RÞ þ V � r
D0 ~s

2cp

� �
�

1

cp

D

Dt
ðD0 ~sÞ

�
D0

C2
0

Df
Dt
þ

D0 ~s

2cp

 !
r � V, ð27Þ

DuR

Dt
þ uR � rV ¼ rf� n�

Df
Dt

rS0

cp

�
V

2cp

D~s

Dt
, (28)

D~s

Dt
þ rfþ uR þ

~sV

2cp

� �
� rS0 ¼ 0. (29)

The boundary conditions implemented allow for the inclusion of acoustic lining on the duct walls.
The inner and outer duct walls are taken to have complex impedances Z1 and Z2, respectively,
with hard wall boundary conditions given by the limit Zj !1. The boundary conditions for an
arbitrary mean flow along a curved wall, defined originally by Myers [16] and implemented by
Rienstra [5] and Cooper and Peake [1], are

�ioð~v � njÞ ¼ ½�ioþ V � r � nj � ðnj � rVÞ�
~p

Zj

� �
at r ¼ RjðX Þ; j ¼ 1; 2, (30)

where nj are the outward-directed normal vectors at the wall.
4.2. Leading-order solution

For the acoustic modes found in mean swirling flow the method of multiple scales is used
to obtain the perturbation solution. The solution is assumed to have a slowly-varying amplitude
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with a phase variation of the form

ðf; uR
x ; u

R
r ; u

R
y ; ~s=cpÞðx; r; y; t; �Þ ¼ ½ðA0;X0;R0;T0; ŝ0ÞðX ; r; �Þ þ �ðA1;X1;R1;T1; ŝ1ÞðX ; r; �Þ

þOð�2Þ� exp
i

�

Z X

kðZÞdZþ imy� iot

� �
, ð31Þ

where k is the axial wavenumber, m the circumferential wavenumber and o the frequency. The
unknown axial wavenumber and amplitudes are determined as part of the solution. (Note that for
the vortical disturbances not considered here the amplitudes would depend on both x and X.)
Substitution of the disturbance form in Eq. (31) into the governing equations (27)–(29) and taking
Oð1Þ terms gives

q2A0

qr2
þ

1

r
þ

q lnD0

qr

� �
qA0

qr
þ

L2

C2
0

�
m2

r2
� k2

 !
A0 þ

qR0

qr
þ

1

r
þ

q lnD0

qr

� �
R0

þ
imT0

r
þ ikX0 þ ðo� LÞ

iŝ0

2
¼ 0, ð32Þ

iLX0 þ
qU0

qr

qA0

qr
þR0

� �
þ

U0

2
iLŝ0 ¼ 0, (33)

iLR0 �
2W 0T0

r
�

GimA0

r
�

qU0

qr
ikA0 þ

iLA0

g
qŜ0

qr
¼ 0, (34)

iLT0 þ G
qA0

qr
þR0

� �
þ

W 0

2
iLŝ0 ¼ 0, (35)

iLŝ0 þ
qA0

qr
þR0

� �
1

g
qŜ0

qr
¼ 0, (36)

where Ŝ0 ¼ S0=cv, G ¼ ð1=rÞqðrW 0Þ=qr and L ¼ kU0 � oþmW 0=r. The Oð1Þ terms in the
boundary condition (30) are

io
qA0

qr
þR0

� �
�

D0L2A0

Zj

¼ 0, (37)

where � refers to evaluation at R1ðX Þ and R2ðX Þ, respectively.
Comparing Eqs. (33) and (35) gives

X0 ¼
qU0

qr

T0

G
� U0 �

qU0

qr

W 0

G

� �
ŝ0

2
. (38)

Following the elimination of Eq. (33), the remaining Eqs. (32) and (34)–(36) can be expressed in
the form of a linear eigenvalue problem

ðL� kKÞw0 �Fw0 ¼ 0, (39)

where w0 ¼ ðA0; Z0;R0; iT0; iŝ0Þ, with Z0 ¼ kb20A0 and b20 ¼ 1�U2
0=C2

0. The operators L and K
are defined in Appendix A.
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The Oð1Þ linear eigenvalue problem in Eq. (39), together with the boundary conditions in
Eq. (37), is solved numerically using a Chebyshev spectral collocation method with a staggered
grid as described by Khorrami [17]. The eigenvalue problem is solved at each axial location to
determine the axial wavenumber kðX Þ and a normalized numerical eigenfunction ŵ0ðX ; rÞ. The
leading-order unsteady solution is then given by

w0ðX ; rÞ ¼ NðX Þŵ0ðX ; rÞ, (40)

where NðX Þ is an arbitrary function which is determined from the fact that the Oð�Þ problem is
solvable. Any solvability condition which gives c0 without having to determine c1 can be applied.
Here the approach based on the adjoint operator is used [5,1]. The solvability condition and the
solution for NðX Þ is described in the next section.

4.3. First-order solution

The Oð�Þ terms in the governing equations for the unsteady flow can be written in the form

ðL� kKÞw1 �Fw1 ¼ f, (41)

where f is defined in Appendix B and w1 ¼ ðA1; Z1;R1; iT1; iŝ1Þ, with Z1 ¼ kb20A1. The
corresponding Oð�Þ boundary conditions are

io
qA1

qr
þR1

� �
�

D0L2A1

Zj

¼ io
qRj

qX
ðikA0 þX0 þU0ŝ0=2Þ �

ioV1ŝ0

2

�
i

A0
U0

q
qX
þ V1

q
qr
�

qV1

qr
þ

qRj

qX

qU0

qr

� �

�
D0LA2

0

Zj

� �
; j ¼ 1; 2, ð42Þ

where � refers to evaluation at j ¼ 1; 2, respectively.
The system of equations in Eq. (39) is not self-adjoint and in order to determine the solvability

condition the leading-order adjoint eigenvector wy0 is required. If Fy is the adjoint operator and
h�; �i defines a suitable inner product, then the following identity must be satisfied:

hwy0;Fw0i ¼ hF
ywy0;w0i. (43)

Taking wy0 ¼ ðY 1;Y 2;Y 3;Y 4;Y 5Þ and using the inner product

hJ;Ki ¼

Z R2

R1

X5
n¼1

J�nKnrdr, (44)

where � denotes the complex conjugate, then the adjoint eigenvector is determined by solving

Fywy0 ¼ 0, (45)

subject to the boundary conditions

rD0 �
D0L2Y �1
ioZj

�
qY �1
qr

� �
þ rGY �4 þ

r

g
qŜ0

qr
Y �5 ¼ 0; at r ¼ RjðX Þ; j ¼ 1; 2. (46)
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Owing to the form of the governing equations, analytical expressions can be found for the adjoint
solution in terms of the eigenfunction w0. The adjoint operator and the adjoint solution are given
in Appendix B. The solvability condition is then obtained from the relation

hwy0;Fw1i ¼ hF
ywy0;w1i þ Y �1rD0

qA1

qr
þR1

� �
þ A1 rGY �4 � rD0

qY �1
qr
þ

Y �5r

g
qŜ0

qr

 !" #R2

R1

. (47)

By using the relations Fw1 ¼ f, Fywy0 ¼ 0, and the boundary conditions in Eq. (42) to eliminate
A1 and R1, the solvability condition can be written in the form

hwy0; fi ¼ R2D0A0
qR2

qX
ikA0 þX0 þ

U0ŝ0

2

� �
�

V1ŝ0

2
�

i

A0
U0

q
qX
þ V1

q
qr
�
qV1

qr

���

þ
qR2

qX

qU0

qr

�
D0LA2

0

ioZ2

��
r¼R2

� R1D0A0
qR1

qX
ikA0 þX0 þ

U0ŝ0

2

� �
�

V1ŝ0

2

��

þ
i

A0
U0

q
qX
þ V1

q
qr
�
qV1

qr
þ

qR1

qX

qU0

qr

� �
D0LA2

0

ioZ1

��
r¼R1

. ð48Þ

After some algebra the solvability condition can be rearranged to generate a governing equation
for the amplitude function NðX Þ of the form,

F ðX Þ
d

dX
½N2ðX Þ� ¼ GðX ÞN2ðX Þ, (49)

where expressions for F ðX Þ and GðX Þ are given in Appendix B. The general solution is then

N2ðX Þ ¼ N2
0 exp

Z X GðZÞ
F ðZÞ

dZ
� �

, (50)

where N0 is a normalization constant.
Under the isentropic flow assumption (Ŝ0 ¼ 0) the expressions for FðX Þ and GðX Þ reduce to

those given in Ref. [1], and in the further limit of zero mean vorticity the solution becomes exactly
that derived by Rienstra [5].
In the final governing equation (49) there is no explicit dependence on �, and since both sides

contain only single X-derivatives the equation is invariant under tranformation back to the
physical variable x [5], i.e. x can be substituted for X in Eqs. (49) and (50). It is therefore
convenient to consider axial variations in the example calculations in terms of the physical
variable x rather than the slow variable X.
5. Results

The following duct shape is used as an example throughout:

R1ðxÞ ¼ 0:5482þ 0:05 tanhð2x� 2Þ; R2ðxÞ ¼ 1:1518� 0:05 tanhð2x� 2Þ. (51)
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The unsteady pressure is characterized by the axial wavenumber kðxÞ and the cross-sectionally
averaged potential amplitude

AðxÞ ¼

Z R2

R1

jA0ðx; rÞj
2rdr

� �1=2
. (52)

For a hard-walled duct the pressure-dominated family of eigenmodes consists of a finite number
of propagating (cut-on) modes and an infinite discrete set of cut-off modes. Each eigenmode is
associated with a radial order and the cut-on modes occur at the lowest radial orders. Only the
first radial-order is considered here.

5.1. Comparison between isentropic and non-isentropic flows

In order to compare with the results obtained from the standard isentropic flow assumption the
initial mean entropy distribution is chosen as a prescribed initial condition, together with the
initial mean velocity. At the inlet (x ¼ 0) the flow conditions are then given by

U0ðx ¼ 0; rÞ ¼ Ui; W 0ðx ¼ 0; rÞ ¼ Or; V ðx ¼ 0; rÞ ¼ 0; Ŝ0ðx ¼ 0; rÞ ¼ � lnðarbÞ, (53)

where a and b are constants to be specified. The form chosen for the mean entropy enables
comparison between isentropic (a arbitrary, b ¼ 0) and non-isentropic (a, b arbitrary) flows to be
established.
At the duct inlet the radial momentum equation and the first relation in Eq. (5) become

1

D0

qP0

qr
¼

W 2
0

r
¼ O2r; P0 ¼

D
g
0

garb
, (54)

which can be used to determine an equation for the initial mean density

1

ðg� 1Þ

qðDg�1
0 Þ

qr
�

b
gr

D
ðg�1Þ
0 ¼ arb�1W 2

0. (55)

This has solution

D0ðX ¼ 0; rÞ ¼ rb=g
aðg� 1ÞO2r2þb=g

2þ b=g
þ K3

� �1=ðg�1Þ

, (56)

where K3 is an arbitrary constant chosen such that D0ðx ¼ 0;R1ð0ÞÞ ¼ 1 when b ¼ 0; a ¼ 1.
Integration of the first term in Eq. (15) then gives

cðx ¼ 0; rÞ ¼
Ui

gaO2

aðg� 1ÞO2r2þb=g

2þ b=g
þ 1

� �g=ðg�1Þ
� K4, (57)

where the constant K4 is chosen such that cðx ¼ 0;R1ð0ÞÞ ¼ 0. The expression for the streamfunction
is then rearranged to provide an expression for r in terms of c which is used to obtain expressions for
H, C and S in terms of c alone. The coupled Eqs. (22) and (23), together with the boundary
conditions, are then solved iteratively to determine the evolution of c and D0 downstream.
The mean flow solutions for three different initial mean entropy distributions are shown in

Fig. 1. The initial mean entropy profiles used are the isentropic case Ŝ0 ¼ 0 given by b ¼ 0, a ¼ 1,
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the positive entropy gradient given by b ¼ �0:5, a ¼ R1ð0Þ
�b, and the negative entropy gradient

given by b ¼ 0:5, a ¼ R2ð0Þ
b. In each case Ui ¼ 0:3 and O ¼ 0:3. Note that the initially uniform

axial velocity develops some radial variation as it moves along the duct, and the radial profiles
downstream depend on the form of the initial mean entropy profile. The main differences to the
flow patterns resulting from the different initial entropy distributions occur in the form of the
mean density. A very different initial profile is generated which affects the subsequent evolution,
with much larger density variations observed for the non-isentropic (ba0) cases.
The unsteady flow field is now determined for initial mean entropy distributions corresponding to two

case of isentropic flow (Ŝ0 ¼ 0 and 0.24) and two cases of mean entropy gradient specified by b ¼ �0:5.
Results are presented for a hard-walled duct with m ¼ 12 ando ¼ 18. These initial entropy profiles give
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rise to different initial distributions of the mean density (and mean pressure) as well as affecting the
subsequent evolution. The changes to the initial conditions are reflected by differences in the initial
eigenvalue spectra which are shown in Fig. 2(a). This shows that the Ŝ0 ¼ 0 case has a cut-on mode
furthest from cut-off, and the mode for the b ¼ �0:5 case is closest to cut-off. This trend appears to be
related to the relative levels of initial mean pressure (see Fig. 2(b)) where the highest/lowest levels of
mean pressure correspond to the entropy distributions giving rise to modes closest to/furthest from cut-
off. For isentropic flow the move toward cut-off with increasing mean entropy value can be attributed
directly to increases in the mean sound speed (see Fig. 2(c)). Modes closest to cut-off exhibit the largest
variation in amplitude (see Fig. 3) with significant differences observed between zero mean entropy flow
and the positive entropy gradient flow. Similar trends are observed for all values of m, including negative
values of m which correspond to modes counter-rotating to the mean swirl. Note that for isentropic flow
the Oð1Þ energy equation (36) reduces to Lŝ0 ¼ 0. The purely convected solution, corresponding to
L ¼ 0, is not found but instead no entropic disturbance is generated (ŝ0 ¼ 0).
The effect of varying the initial mean entropy across a range of entropy gradients is now

considered. The evolution of the axial wavenumbers for upstream and downstream-propagating
modes in a hard-walled duct when m ¼ 12, o ¼ 18 is shown in Fig. 4(a) for initial mean entropy
distributions given by �0:6pbp0 with the value of a chosen such that Ŝ0 ¼ 0 at the inner radius.
The effect of increasing the mean entropy gradient is to move the cut-on modes closer to cut-off.
When the level of mean entropy is sufficiently high the upstream and downstream modes coalesce
at some axial location and the modes become cut-off (see results for b ¼ �0:6). The move toward
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cut off is reflected in the cross-sectionally averaged amplitudes shown in Figs. 4(b) and (c), where
as jbj increases (and the modes become closer to cut-off), the amplitude undergoes significant
variation along the duct. If b is taken to be positive, with a chosen such that Ŝ0 ¼ 0 at the outer
radius, then there is still a trend toward cut-off as b increases, but the effect is much smaller as
demonstrated in Fig. 5.
The general effect of varying the initial mean entropy gradient and the influence of frequency is

assessed by plotting the cross sectionally averaged amplitude at the duct end points as a function
of b. This is shown in Fig. 6 for m ¼ 12 and the frequency values o ¼ 16–18. Also shown are the
corresponding results for the equivalent isentropic case, where the value of the uniform mean
entropy is chosen to be the mean value of the entropy gradient given by

meanðŜ0Þ ¼
2

R2
2ð0Þ � R2

1ð0Þ

Z R2ð0Þ

R1ð0Þ

� lnðarbÞrdr. (58)

This attempts to identify whether the variation from the Ŝ0 ¼ 0 (a ¼ 1;b ¼ 0) case occurs as a result
of the increase in value of the entropy or as a result of the entropy gradient. Negative
values of b (positive entropy gradient) always push the modes furthest toward cut-off resulting in
strong amplitude variation. For positive values of b (negative entropy gradient) the trend is also
toward cut-off but the amplitude variation is less than that for the corresponding mean isentropic
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value. The positive/negative mean entropy gradient appears to enhance/diminish the effect brought
about by non-zero uniform mean entropy. Fig. 6 also demonstrates the trend brought about by
frequency variation. For a given level of mean entropy amplitudes at the duct end points increase as
modes become closer to cut-off. The strong variation with frequency in Fig. 6 can be explained by the
fact that as the frequency increases modes move further away from cut-off. This effect is enhanced
as the entropy gradient increases. For each frequency the mode produced when Ŝ0 ¼ 0 is the most
cut-on and exhibits the least amplitude variation.
5.2. Uniform initial density, effect of swirl

In order to determine how the mean swirl affects the entropy distribution the following
conditions are now applied as the initial mean field at the duct inlet:

U0ðx ¼ 0; rÞ ¼ Ui; W 0ðx ¼ 0; rÞ ¼ Orþ U=r; Vðx ¼ 0; rÞ ¼ 0; D0ðx ¼ 0; rÞ ¼ 1. (59)
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The radial momentum equation defines the initial mean pressure as

P0ðx ¼ 0; rÞ ¼
O2

2
ðr2 � r21Þ þ 2OU ln

r

r1

� �
þ

U 2

2

r2 � r21
r2r21

� �
þ
1

g
, (60)

where r1 ¼ R1ð0Þ. The initial mean entropy is then determined from S0=cv ¼ lnðgP0Þ. Integration
of the first expression in Eq. (15) with respect to r determines the streamfunction as

cðx ¼ 0; rÞ ¼
Ui

2
ðr2 � r21Þ, (61)

which can again be rearranged to express r in terms of c, and used subsequently to obtain
analytical expressions for H, C and S in terms of c alone. The mean field for Ui ¼ 0:3, O ¼ 0:3
and U ¼ 0:2 generates a mean entropy distribution with positive gradient as shown in Fig. 7. If the
initial mean swirl is increased then this results in an increase in the level of mean entropy as shown
in Fig. 8. It is also evident that the rigid-body component of the mean swirl increases and the free-
vortex component decreases as x increases.
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Swirl is known to cut-off co-rotating modes (m40) which are cut-on in the absence of swirl
[18]. For modes which are counter-rotating (mo0) the effect of swirl is to cut-on modes. The
effect of the different levels of initial mean swirl on the unsteady field is shown in Fig. 9. This
shows that the trend toward cut-off with increasing swirl is also observed when non-uniform mean
entropy is included. The effect of placing an acoustic lining on the outer wall is shown in Fig. 10.
The downstream/upstream-propagating cut-on modes are pushed into the upper/lower halves of
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the complex k-plane. In order to interpret how damped the modes become account must be taken
of both the variation of A and the exponential factor exp½i

R x
ðkðZÞ=�ÞdZ�. This is accomplished by

considering the function

BðxÞ ¼ AðxÞ exp �
1

�

Z x

kiðZÞdZ
� �

. (62)

Fig. 10(c) shows that the upstream-propagating modes are the most damped owing to larger
values of jkij. The acoustic lining is most effective for modes which are closest to cut-off in a
hard-walled duct.
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5.3. Turning-point solution

The general multiple-scales solution in Eq. (50) breaks down when F ðX Þ ¼ 0, and this occurs at the
transition from cut-on to cut-off at so-called turning points. The cut-on cut-off transition is found in
many flow cases including both swirling and irrotational flows. Here, and for isentropic swirling flow,
F2 passes through zero at the turning point, so that on one side of the turning point F is real and on
the other side F is complex. A non-singular solution for the isentropic case was derived in Ref. [1] by
including higher-order second derivatives in the solvability condition. The amplitude in the region of
the turning point is then governed by a form of Airy’s equation. The same process can be carried out
for non-isentropic flow and it is found that the inclusion of non-zero mean entropy does not change
the general structure of the solution in the turning-point region.
6. Concluding remarks

This paper describes how a systematic approximate solution is constructed for sound
propagation through varying ducts with a mean flow that contains swirl and non-uniform
entropy. Within this analysis a systematic mean flow solution for the slowly-varying duct is
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determined. It is shown that the propagation of acoustic modes can be affected strongly by non-
uniform mean entropy. Even in the case of a uniform duct the differences between assuming
isentropic and non-isentropic flows can be significant, particularly in the cut-on cut-off nature of
the acoustic modes. Any form of non-zero mean entropy is found to push modes toward cut-off.
Positive entropy gradients are found to have the most effect on the propagation of acoustic

modes, producing modes much closer to cut-off. Negative mean entropy gradients are found to
have less effect than the corresponding mean isentropic value. The slow axial variation in the duct
enhances the changes to the cut-on/cut-off nature of the duct modes since those modes which are
closest to cut-off exhibit much larger variations in amplitude. The importance of accounting for
the mean entropy distribution is therefore of two-fold importance. Since only cut-on modes
contribute to the generated noise field, the cut-on/cut-off nature of the modes affects the
propagation of noise along the duct. Suppose, under the standard isentropic flow assumption, a
mode is cut-on. If the mean entropy distribution is accounted for then this mode may still be cut-
on but undergo significantly different amplitude variation which would, in turn, affect the level of
noise. Alternatively the mode may actually become cut-off and therefore no longer contribute to
the noise field.
It has also been shown that as the level of mean swirl increases the mean entropy increases. It is

therefore essential that mean entropy variations be accounted for in strongly swirling flows. The



ARTICLE IN PRESS

A.J. Cooper / Journal of Sound and Vibration 291 (2006) 779–801798
effect of acoustic lining is also included in the analysis and results show that the liner is generally
most effective for modes closest to cut-off. Again, due to the effect of mean entropy on the
cut-on/cut-off behaviour of the modes this would have implications for the effectiveness of acoustic
linings.
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Appendix A

The operators L and K defining the linear eigenvalue problem in Eq. (39) are

L ¼

P �
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where om ¼ o�mW 0=r and P is the operator
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q
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Appendix B

The vector f appearing on the right-hand-side of the Oð�Þ linear eigenvalue problem (41) takes
the form f ¼ ðf A; f Z; f R; f T; f sÞ where

f A ¼ i
1

A0

q
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� k
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, ð63Þ

f Z ¼ 0, (64)

f R ¼ i U0
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f s ¼ �V1
qŝ0

qr
�U0

qŝ0
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where
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The adjoint operator Fy is

Fy ¼
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The adjoint solution is

Y 1 ¼ A�0, (69)
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The functions appearing in Eq. (49) are

F ðX Þ ¼

Z R2

R1

ros
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D0A
2
0 þ
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2
ðiX0 �U0iŝ0Þ þ

r

2
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 !(

þ
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dr�
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ioZ2
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�
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� �
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,

GðX Þ ¼ �

Z R2

R1

q
qX
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� �
þ rD0

q
qX
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q
qX
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q
qr

rLV1

C2
0

D0A
2
0

 !(

� A0
q
qr
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qr
f R
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dr
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where � refers to evaluation at R1 and R2, respectively, and

os
C0
¼

U0L

C2
0

þ k.
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